Currently viewing the tag: "Sprint"

Dishint Been a while… I’ve been collaborating and innovating but I thought I would register my approval of a Dish + Sprint + Clear tie up. Firstly let me say I don’t think Softbank would be willing to let the opportunity slip away so low ($25.5B US) but I like the idea of an all wireless triple play. Yes, after a decade of talking about ‘Triple Play” it could finally happen. 

Some reasons that I like the idea of this combination:

  • Pricing for TV and mobile telephony in the US is high and not falling due to relative mon/du opolies of dominant incumbents
  • Dish and Sprint have both looked to use spectrum in alternative ways- seems like they could finally put something new out when together.
  • Sprint’s extreme risk averse culture sure could use a shake up, overall, it is really is slow to make decisions.
  • A triple play offer that’s true- not a reseller play, could offer some interesting future technology through integration
  • Both subscriber bases could grow marginally
  • Synergistic (did I just say that?) spectrum for LTE Advanced!
  • Saves a combined company CAPEX by not having Dish rush to build a nationwide LTE network (good for subs, but takes a very long time, so small likelihood of success)

They both also have ‘oddball’ spectrum, 2.6/2.3GHz [TDD]/800MHz [FDD] @ Sprint plus the 2200MHZ [FDD] @ Dish and could be merged into a very fast LTE-Advanced spectrum with some changes @ 3GPP…Heck even Verizon doesn’t have that much spectrum that close together to put up initially, although they have lower bands which have better RF propagation characteristics than the 2.2GHz.

Interestingly, Dish has set top boxes in homes and Sprint has femtocells deployed, so there is CPE in millions of homes. A combined devices makes a lot of sense but has been difficult to pull off between competitive issues etc…

Here is Dish’s site about the merger

Overall I think this could be a win for the US subscribers!

we win

 

Reuters Story:

Dish tries to trump SoftBank with $25.5 billion Sprint offer

From the Dish site:

Offer Letter

On behalf of DISH Network Corporation (“DISH”), I am submitting this proposal for a merger between DISH and Sprint Nextel Corporation (“Sprint”). Our proposal provides Sprint shareholders with a superior alternative to the pending Sprint/SoftBank transaction. It provides a superior cash proposal and affords your shareholders the opportunity to participate in a combined DISH/Sprint, which will benefit from substantial synergies and a significantly-enhanced strategic position.

sprint + FreedomPOP MVNO LTE Experiement A curious market experiment is taking place. I’ll explain. FreedomPop, an Mobile Virtual Network Operator (MVNO) founded in 2011 and based in Los Angeles, is offering 500MB of free wireless data over LTE for their customers. They are marketing a DSL type of replacement service with a LTE gateway and LTE mobile service through dongles, usb attachments for tablets and iPods. Their business model seems to be to over 4G LTE services as an MVNO by appealing to the lower end of the market with the offer of free data, low device costs, and opportunities to increase the amount of free data (beyond the initial 500MB) through mobile ads.

I think this is interesting from several angles.

Firstly, FreedomPop, at the moment is positioned as data only MVNO, unlike the multitudes of voice centric MVNO’s in the North American marketplace. This is interesting because they will either be complementing or competing with Clear on Sprint. If there is Clear then why FreedomPop…not ‘clear’ to me yet. The guys at prepaidreviews.com have a nifty chart that shows the present relationships in the NA MVNO space.

MVNO Chart So the first question is, does FreedomPop fill a market segment underserved today? Not clear…haha…couldn’t resist. Maybe.

freedom hub in box

Yes, the second angle is target market. They are offering a DSL replacement service via their LTE gateway called the Freedom Hub Burst. This is a good idea generally speaking to serve the underserved, but this is exactly what Clear is doing. If the top end of the market, unlimited @ $49.99/mo is served by Clear, this is a complementary new bottom end offer to grow the total base. 

freedom-sleeve-rocket-001They are selling a sleeve for an iPod to add connectivity, which is shown to the left and is called the Freedom Sleeve Rocket and a small form factor attachment to tablets to add mobile 4G to WiFi only tablets called Freedom Pop LTE Clip. To me this represents the underserved lower end of the market that could not afford to add mobile broadband to their device purchase initially and/or people purchasing these devices in a secondary/used market and now are attracted to mobile internet. 

Third interesting angle is they are apparently planning to offer an open WiFi hotspot service and/or device. Tell me that an open WiFi hotspot won’t drive service demand. At an extra $10 per GB, this could get costly for the poor fellow that gets one. On the other hand, I wonder how they will deal with guys who think like I do. I would get this hotspot, and free 500MB of monthly data and use it for connected embedded devices like refrigerators, picture frames, alarm systems etc. It may be locked down where you cannot turn on WPA type of security and that would discourage people like me from using it that way. Either way, driving demand is a good thing from their standpoint.

Last angle to discuss is the service subsidy. They are planning to offer opportunities for their subscribers to get more free data through mobile advertising participation, referral to friends, joint offers with partners like Netflix and so on. I think this is probably a the most facinating angle of all to me. Mea culpa, I have long advocated this, so yeah, I’m interested in the outcome, however this has not been systematically tried like this before in the mobile broadband arena. Seems to me, if they can find compelling opportunities this alone may help build the base. Maybe the free WiFi hotspot could add some free data to your monthly quota by just using the FreedomPop hotspot name as advertising to build interest. I may be compelled to put it in my car for my kids if that were true. There are so many ways this could get really interesting. Again, I think this could be the secret sauce in the end.

It’s also worth noting, the lack of a voice offering makes me wonder if they are waiting to offer VoLTE type of devices for your vocal pleasure? There has been no public mention of this but I can’t help but think that since they are focusing on LTE and not WiMAX as their platform, and they are looking to head down the path of enabling connectivity over LTE, then this must be a future possibility for them.

So at the end of the day, FreedomPop is a very interesting experiment being tried out by DCM, Mangrove Capital Partners  and  Atomico/Niklas Zennstrom to build a business as a $10/mo no contract 4G LTE MVNO. There’s nothing clearly wrong with their approach nor overly innovative or different, but maybe the interesting mix of target markets, devices and market savvy like offering free 500MB of mobile broadband will be compelling to the market. Who knows, with popularity maybe the whole marketplace will need to react, and that could be a good thing…

Very fascinating.

live long and prosper Spock

 

public knowledgeOK there is a non profit named Public Knowledge, based in Washington D.C. of course, and fight for our networks to be open. I personally like that mission but they have put out a disturbing statement … See this:

AT&T is using the data caps that it imposes on its home broadband subscribers to disadvantage competitors to AT&T Wireless.

The AT&T 3G MicroCell acts as a miniature cell tower that can be used to supplement and improve cell phone service for voice calls or data applications. However,  AT&T is exempting data from AT&T Wireless MicroCells from the data caps it imposes on its wireless home broadband users. This is similar to Comcast’s decision last year to exempt its own online video service from its data cap.

The following can be attributed to Michael Weinberg, Vice President:

“AT&T is egregiously abusing data caps to give its own services advantages over competitors. There is no reason why AT&T should treat AT&T Wireless MicroCell data different than any other data – including data from a Verizon or Sprint MicroCell – on a subscriber’s home connection.

“Internet service providers should not be able to use data caps anti-competitively. When providers give preferential treatment to data associated with their services, they undermine competition and inhibit innovation. This is precisely the type of discrimination at the core of the net neutrality debate. The FCC and, if necessary, Congress must take steps to end data cap abuse.

AT&T microcell small cell

OK this is a bit misguided. The AT&T Microcell  allows AT&T subscribers to avoid data caps by NOT carrying user traffic over the WCDMA/LTE macro mobile network infrastructure, but pushes it upstream on the END USER’S BROADBAND connection.

C’MON, what’s the problem with that???? Am I missing something here? It’s not like the neighbors can’t buy a MicroCell from their neighborhood AT&T store to avoid going over THEIR data cap, or just connect their own home broadband to a WiFi AP to bypass the AT&T network… Heck, as of today Facebook lets you call each other so this is not even relevant to voice.

The only way I can think to make sense of their complaint is if they are complaining that the small cell core infrastructure (ignore that it’s just SIP based, for now) is closed, thus limiting what types of small cells we end users may obtain and use on the network. There could be an interesting ecosystem here. I doubt this is their angle but it’s a valid complaint.

jackie-chan-wtf-face-i16_m

So an asymmetrical attack, Sprint and Verizon have deployed far more small cells, without technical merit really 99.99% of the time comes from your competitor.

Anyway things like this irritate me to no end…

 

 

Last Friday, in the US, the 10th of August, Sprint announced it had awarded Samsung and Alcatel Lucent contracts to provide small cells. Currently, Airwalk provides enterprise class small cells and Airvana their residential (femto) small cells for CDMA 1x/EVDO. This recent announcement seems centered around LTE, Samsung’s part to play focused on indoor small cells (they provided the first 400K CDMA femtocells) and ALU most likely a LightRadio win, thus outdoor focused with WiFi potential too. Further, it’s most likely that Samsung’s small cell will again be alone (head start of 9-15 months) in it’s ability to interwork CDMA and LTE as they roll their own chipsets whereas the other vendors are part of Qualcomm’s ecosystem. 

This is a first ‘major’ announcement, and NOW we can expect full wide scale deployment of small cells….See, there we go, ip.access just announced a few hours ago they also have 5 customers.

This could be the first chess move towards Sprint moving towards VoLTE too…

Full PR below…

That took forever…

 

 

See the cool concept small cell from ip.access? They focus on WCDMA/HSPA and LTE where as the Samsung focus is more CDMA and LTE, and ALU just LTE and WiFi for now…

 

 

Alcatel Lucent’s Cool Light Radio:


Links: alcatelucent.com, youtube.com, Samsung, ip.access

ip.access Press Release

14th August 2012

ip.access on target for Small Cell LTE Roll-out

First units already shipped to customers

Cambridge, Aug 14th 2012: ip.access today confirmed that it had already shipped an LTE-only version of its new E-100 dual mode access point to five customers for laboratory and field trials. This is an important staging point in the process of moving towards full commercial deployments and represents the company’s first LTE product shipments.

Announcing the shipments, ip.access CEO Simon Brown said: “Customer interest has been strong in the E-100 and we have invested in accelerating the programme in order to meet that demand.

“Indeed, our commitment to increased R&D into understanding and delivering on all the end-to-end requirements of the developing small cell network layer – from access points to network gateways and management systems – is now paying dividends; gaining recognition and support from network operators, system integrators, our partners and the industry in general.”

The E-100 is a small cell Access Point targeted for use in enterprises and public indoor environments. The device will provide simultaneous 4G and 3G mobile phone signals with data speeds of up to 150 Mbps and 42 Mbps respectively and will also be able to support WiFi as an optional module.

ip.access founder and CTO Nick Johnson said: “Small cells will have a vital role to play in delivering LTE’s promise of high-speed data for the mass-market and the E-100 will allow operators to quickly deploy that capacity exactly where it is needed.”
The E-100 will be integrated into ip.access’ nanoConverge end-to-end small cell solution architecture, allowing operators to deploy the E-100 alongside the company’s existing 3G small cells using the same gateways and network management system.

Last month, judges at the Small Cells Forum industry awards gave ip.access a special award for its Network Orchestration System small cell layer next generation management tool and its nanoConverge combined 3G/LTE network gateway.

 

Samsung Press Release

August 10, 2012 in Mobile

SAMSUNG Network Infrastructure to Complement Sprint Network Vision with LTE Small Cell Deployment Program Award

Samsung will leverage its strong business alliance with Sprint, and expertise in 3G and 4G infrastructure and managed services to improve coverage and speed for Sprint customers

DALLAS and KANSAS CITY – August 9, 2012 – Samsung Telecommunications America (Samsung Mobile), the No. 1 mobile phone provider in the United States and a leading provider of 3G and 4G network infrastructure, has been chosen to help develop Small Cell Network Infrastructure for Sprint’s (NYSE: S) Network Vision Program. Sprint’s Network Vision is a multi-year initiative to enhance Sprint customers’ network experience, including improvements in coverage, quality and speed by deploying multi-mode base stations capable of supporting various spectrum bands.

Sprint and Samsung engineers collaborated to develop products to significantly expand the coverage and capacity of the Sprint network utilizing Samsung’s small cells. For these small cell rollouts, Sprint plans to deploy a heterogeneous network, or HetNet, that targets high traffic indoor areas and hundreds of high capacity public venues such as stadiums, conference centers, office complexes, hotels, and airports.

“Our ongoing work with Sprint’s Network Vision demonstrates Samsung’s commitment to developing custom solutions with our leading carrier customers. This new award will allow Sprint to meet increasing demand for coverage and capacity while consolidating multiple legacy networks and spectrum bands in a single platform,” said Dale Sohn, president of Samsung Mobile. “The deployment of our small cell technology will enhance Sprint’s network and demonstrates the strength of Samsung’s infrastructure offering.”

Samsung initially became involved in the Network Vision program in December 2010. The two companies also collaborate closely to deliver Sprint’s 56 million customers nationwide 4G LTETM devices including the Samsung Galaxy Nexus and Samsung Galaxy S III® wireless handsets.

“Network Vision is all about improving the network experience for our customers,” said Bob Azzi, senior vice president of network operations for Sprint. “We are excited to expand our relationship with Samsung with their inclusion in the small cell program and provide customers with the cutting edge network they need to keep up with the cutting edge phones Sprint offers.”

With more than 30 years of telecommunications experience, Samsung is the only telecommunications infrastructure vendor providing end-to-end solutions for all major network technologies from chipsets and infrastructure, to mobile devices.

Samsung, Galaxy, and Galaxy S are all trademarks of Samsung Electronics Co., Ltd. All other company names, product names and marks are the property of their respective owners and may be trademarks or registered trademarks.

About Sprint Nextel 
Sprint Nextel offers a comprehensive range of wireless and wireline communications services bringing the freedom of mobility to consumers, businesses and government users. Sprint Nextel served more than 56 million customers at the end of the second quarter of 2012 and is widely recognized for developing, engineering and deploying innovative technologies, including the first wireless 4G service from a national carrier in the United States; offering industry-leading mobile data services, leading prepaid brands including Virgin Mobile USA, Boost Mobile, and Assurance Wireless; instant national and international push-to-talk capabilities; and a global Tier 1 Internet backbone. The American Customer Satisfaction Index rated Sprint No. 1 among all national carriers in customer satisfaction and most improved, across all 47 industries, during the last four years. Newsweek ranked Sprint No. 3 in its 2011 Green Rankings, listing it as one of the nation’s greenest companies, the highest of any telecommunications company. You can learn more and visit Sprint at www.sprint.com or www.facebook.com/sprint and www.twitter.com/sprint.

About Samsung Telecommunications America

Samsung Telecommunications America, LLC, a Dallas-based subsidiary of Samsung Electronics Co., Ltd., researches, develops and markets wireless handsets, wireless infrastructure and other telecommunications products throughout North America. For more information, please visit www.samsung.com.

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. is a global leader in semiconductor, telecommunication, digital media and digital convergence technologies with 2011 consolidated sales of US$143.1 billion. Employing approximately 206,000 people in 197 offices across 72 countries, the company operates two separate organizations to coordinate its nine independent business units: Digital Media & Communications, comprising Visual Display, Mobile Communications, Telecommunication Systems, Digital Appliances, IT Solutions, and Digital Imaging; and Device Solutions, consisting of Memory, System LSI and LED. Recognized for its industry-leading performance across a range of economic, environmental and social criteria, Samsung Electronics was named the world’s most sustainable technology company in the 2011 Dow Jones Sustainability Index. For more information, please visit www.samsung.com.

ALU Press Release

Sprint to leverage Alcatel-Lucent’s lightRadio to bring high-capacity 4G LTE mobile broadband coverage and speeds to busy public locations

lightRadio Metro Cells to be deployed on Sprint’s network to deliver extra capacity and better quality connections in locations such as stadiums and campusesOverland Park, Kan. and Paris – August 6, 2012 – Alcatel-Lucent (Euronext Paris and NYSE: ALU) and U.S. service provider Sprint (NYSE: S) are today announcing an agreement to deploy Alcatel-Lucent’s lightRadio™ Metro Cells to augment coverage in high-traffic areas. Metro cells are mini base stations that can easily be deployed indoors or outdoors on lamp posts or street signs, inside shopping malls or stadiums to provide enhanced capacity. They can also fill gaps in coverage – created by buildings – in densely populated urban locations. Sprint’s initial deployment will focus on indoor applications, including entertainment venues, transportation hubs and business campuses. By deploying metro cells, Sprint expects to deliver a better broadband experience to more of its subscribers in these high-traffic areas and will help reduce costs in the process.The growing adoption of smartphones, tablets and other mobile devices has resulted in an increased demand for Internet access, video and other mobile data services. At sporting events, popular shopping venues and other social and business occasions, large numbers of people are accessing social networking sites, sharing videos, playing Internet games and making voice and video calls, putting stress on mobile service providers’ cellular networks. This can lead to dropped calls, slower data connections and reduce the subscriber’s mobile broadband experience.To address this fast-growing demand for data, Sprint is building an all-new network, an initiative known as Network Vision. This new network will include the deployment of a new, improved 3G network and 4G LTE. Small cell technology complements the Network Vision plan by providing a lower cost infrastructure to expand coverage and capacity in targeted high usage areas. “Sprint is a leader in innovation, and as such, we want our customers to enjoy the latest high-bandwidth services and applications,” said Bob Azzi, Sprint senior vice president-Network. “With Alcatel-Lucent’s lightRadio Metro Cells we will be able to increase our coverage and capacity where it’s needed.”Robert Vrij, president of Alcatel-Lucent’s Americas Region and head of Global Strategic Alliances, said enhancing mobile broadband coverage in busy public areas is a top priority for many service providers. “As a leader in small cell technology, Alcatel-Lucent is in an ideal position to address this challenge,” he said. “By selecting our lightRadio Metro Cells, Sprint can offer its customers the quality of mobile broadband experience they expect, keeping them connected wherever they are.”Alcatel-Lucent’s lightRadio technology supports the full range of wireless technologies, including 2G, 3G and 4G LTE, and Wi-Fi. This provides mobile operators with the capability to grow their network capacity to meet exploding demand for data services with higher speeds and in a smaller physical space. lightRadio also addresses many other operator challenges, including reducing power consumption for a greener footprint and providing a deployment solution that helps operators bridge the digital divide for people without Internet access.Alcatel-Lucent will provide Sprint with the lightRadio™-based Metro Cell portfolio of products which are capable of supporting outdoor, urban hotspot, rural and indoor applications.

To date, Alcatel-Lucent has 39 commercial small cell deployment agreements and more than 20 ongoing trials.

About Sprint Nextel

Sprint Nextel offers a comprehensive range of wireless and wireline communications services bringing the freedom of mobility to consumers, businesses and government users. Sprint Nextel served more than 56 million customers at the end of the second quarter of 2012 and is widely recognized for developing, engineering and deploying innovative technologies, including the first wireless 4G service from a national carrier in the United States; offering industry-leading mobile data services, leading prepaid brands including Virgin Mobile USA, Boost Mobile, and Assurance Wireless; instant national and international push-to-talk capabilities; and a global Tier 1 Internet backbone. The American Customer Satisfaction Index rated Sprint No. 1 among all national carriers in customer satisfaction and most improved, across all 47 industries, during the last four years. Newsweek ranked Sprint No. 3 in its 2011 Green Rankings, listing it as one of the nation’s greenest companies, the highest of any telecommunications company. You can learn more and visit Sprint at external linkwww.sprint.com or external linkwww.facebook.com/sprint and external linkwww.twitter.com/sprint.

Sprint Nextel Media Contact:

Kelly Schlageter

703-592-8809
[email protected]

About Alcatel-Lucent (Euronext Paris and NYSE: ALU)The long-trusted partner of service providers, enterprises and governments around the world, Alcatel-Lucent is a leading innovator in the field of networking and communications technology, products and services. The company is home to Bell Labs, one of the world’s foremost research centers, responsible for breakthroughs that have shaped the networking and communications industry. Alcatel-Lucent was named one of MIT Technology Review’s 2012 Top 50 list of the “World’s Most Innovative Companies” for breakthroughs such as lightRadio™, which cuts power consumption and operating costs on wireless networks while delivering lightning fast Internet access. Through such innovations, Alcatel-Lucent is making communications more sustainable, more affordable and more accessible as we pursue our mission – Realizing the Potential of a Connected World.With operations in more than 130 countries and one of the most experienced global services organizations in the industry, Alcatel-Lucent is a local partner with global reach. The Company achieved revenues of Euro 15.3 billion in 2011 and is incorporated in France and headquartered in Paris.For more information, visit Alcatel-Lucent on: http://www.alcatel-lucent.com, read the latest posts on the Alcatel-Lucent blog: http://www.alcatel-lucent.com/blog and follow the Company on Twitter: external linkhttp://twitter.com/Alcatel_Lucent.Contact the Alcatel-Lucent Press Office:[email protected]

 

I just wanted to add a link to Qualcomm’s latest HD Voice Video. It has some good description of the voice improvements going into their chipsets. This is probably a strong reason not to jump off their platform but there are other ways to create these same improvements.

HD Voice is starting to get some attention with the recent launches by Orange and Sprint. As the hypeometer’s needle climbs, there will be a lot of attention focused in this area. I just wanted to put a few facts out there to keep it all straight. These operators have actually different technologies behind their HD Voice launches that eventually merge at VoLTE. I saw some silliness about the HD Voice launches in AnandTech and other places so let’s get started…

Technologies

First a brief history of the universe, starting with current voice technologies used with 3G networks.

Narrowband voice coding has been used in digital cellular systems since the beginning. Today’s smartphones typically employ EVRC for CDMA2000/3GPP2 based networks with a fraction of those employing the more advanced EVRC-B algorithm and AMR for UMTS/3GPP networks. EVRC and AMR are CODECs to transform voice into digitized speech using low amounts of bandwidth/throughput with a primary technique being limiting the input frequency ranges.

This chart shows the tradeoffs involved…

The measurement of voice is based on sampling a population of listeners that rate the quality of the spoken sentences after coding and decoding by an algorithm. Listeners are asked to (subjectively) rate the recordings they heard vs a reference standard. The reference standards are like (A) direct recording of voices or (B) Pulse Code Modulation (PCM) at 64Kbps known in standards as G.711. Here is an example of the rating questions:

This is an experiment to determine the perceived quality of speech over the telephone. You will be listening to a number of recorded speech samples, spoken by several different talkers, and you will be rating how good you think they sound.
Use the single headphone on the ear you normally use for the telephone. On each trial a two- sentence sample will be played. After you have listened to the sample, determine the category from the list below which best describes the overall quality of the sample. Press the numeric key on your keyboard corresponding to your rating for how good or bad that particular passage sounded.
Select the category which best describes the sample you just heard for purposes of everyday speech communication.
The OVERALL SPEECH SAMPLE was:
5 – EXCELLENT
4 – GOOD
3 - FAIR
2 – POOR
1 – BAD

EVRC compresses each 20 milliseconds of (300-3200 Hz), 16-bit sampled speech input into output frames of one of three different sizes: full rate of 171 bits (8.55 kbit/s), half rate of 80 bits (4.0 kbit/s), eighth rate of 16 bits (0.8 kbit/s). EVRC has a peak bitrate of 8.5Kbps, a minimum of 0.8Kbps and ‘conversational’ planning rate of 6Kbps. 

3GPP2 EVRC Standards:  3GPP2 C.S0014-D

The AMR (Adaptive Multi-Rate) codec encodes narrowband (200-3400 Hz) signals for each 20 milliseconds of 8000 Hz at variable bit rates ranging from 4.75 to 12.2 kbps with toll quality speech starting at 7.4 kbps. AMR has a peak bitrate of 12.2Kbps, minimum of 4.75Kbps, ‘typical’ conversational rate of 4Kbps.

3GPP AMR Standard: TS 26.071

The goal of these narrowband VOCODERs is to reduce bandwidth during a conversation while delivering acceptable call quality. You will achieve near ideal speech quality but not full lifelike sound in perfect network conditions.

If you are reading this then likely you have first hand experience with the voice coders used in 3G networks. Moving forward …

Qualcomm (the main commercial influence for EVRC) has developed a more advanced (newer) line of CODECs they call 4GV which include EVRC-B and EVRC-WB (wide band.) Alternatively, there is a small consortium of companies that drive patents for AMR including Voice Age, Nokia, Ericsson, and France Telecom, and they have evolved their narrowband AMR with AMR-WB (you guessed it, wide band.) Lastly, there is SiLK, propelled by Skype. 

 

 

 

 

EVRC-WB is based on a split band coding paradigm in which two different coding models are used for the signal by independently sampling the low frequency (LF) (0-4 KHz) and the high frequency (HF) (3.5-7 KHz) bands.

MOS: 3.24( Street Noise, 15 dB SNR  )

EVRC-WB white paper by Qualcomm      EVRC-WB test results from 3Gpp2 testing

3GPP2 EVRC-WB Standard C.S0014-D_v1.0_EVRC

AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz.

  • Configuration A (Config-WB-Code 0): 6.6, 8.85, and 12.65 kbit/s (Mandatory multi-rate configuration)
  • Configuration B (Config-WB-Code 2): 6.6, 8.85, 12.65, and 15.85 kbit/s
  • Configuration C (Config-WB-Code 4): 6.6, 8.85, 12.65, and 23.85 kbit/s
MOS: 3.14 ( Office Noise, 15 dB SNR  )
3GPP AMR-WB Standard TS 26.204
AMR-WB Whitepaper by VoiceAge

Comparison of AMR-WB and EVRC-WB…

SILK negotiates one of four modes during call setup: Narrowband (NB): 8 kHz sampling rate o Mediumband (MB): 8 or 12 kHz sampling rate. Wideband (WB): 8, 12 or 16 kHz sampling rate. Super Wideband (SWB): 8, 12, 16 or 24 kHz sampling rate. The purpose of these modes is to allow the decoder to limit the highest sampling rate used by the encoder.

MOS: 3.22 ( Office Noise, 15 dB SNR   )

Skype: Silk Data sheet and IETF Standard

Nokia paper comparing Silk and AMR-WB. (Note they are a patent holder for AMR-WB and the paper does slant that way.)

HD Voice is a broad term marketed by operators that seems to refer to the voice coding, more specifically the use of the wide band CODERs like AMR-WB and EVRC-WB. Therefore, under typical conditions, the additional bandwidth used will provide a more lifelike sound between the caller/called.

Operator Deployments

Orange in the U.K. began marketing HD Voice in September of 2010. They have a 3GPP based UMTS network thus they are using the AMR-WB vocoder. They have 7 handsets on their website as supporting the AMR-WB vocoder.

Sprint recently announced the launch of HD Voice with their launch of HTC EVO 4G LTE. Apparently they are using Transcoder Free Operation (TrFO) to support this feature. The basics of this are the 2 end points (Caller and Called) must have the EVRC-WB supported to be able to enjoy the additional sound quality. (It also means the network accepts Service Option 73 requests…)

VoLTE

3G phones have the VOCODERs built into the device and they only work with the connected 3G network infrastructure for voice calling. VoLTE uses an IP Multimedia System (IMS) architecture, that essentially is an application that runs over the LTE channel. The devices (UE) have an IMS client that uses Session Initiation Protocol (SIP) signaling to place calls. The IMS is functionally equivalent to their 3G counterparts but slightly more flexible as you can have various architectures such as distributed, localized, centralized etc… Some interesting flexibility exists in the IMS client, as it is possible for the IMS client to have variable VOCODERs and the IMS has a flexible architecture that will allow support for various VOCODERS. This probably means you can upgrade/downgrade to/from HD voice while mobile, and operators will likely support (free/incremental cost) wide band coding when on high rate connections such as WiFi, femotcells etc.. This makes life more interesting. 

On the flip side, the only official VOCODER supported with 3GPP for LTE networks right now is AMR. Some of you need to push SILK and EVRC-B into the 3GPP standards. Mobile calling could be so much more interesting than it is today.

OK, that was a huge wind up for a little paragraph. The point is HD Voice is available on a few operators over 3G today and likely available almost everywhere with VoLTE using mostly wide band VOCODERs that provide higher MOS scores but also use slightly more bandwidth than 3G voice calls. It will be interesting to see how OTT providers like Skype fit in as they can easily integrate into the IMS/3GPP/VoLTE architecture and may have more to offer in some cases.


Sprint adamantly against refarming existing spectrum, got some relief from having to fit all their LTE hopes and dreams into the PCS G band by a recent rule change by the FCC. The report and order allows re-channelization of the SMR spectrum to facilitate larger channels such as those used by LTE, with exceptions in border areas (US, Canada, PR) that are well documented and they can only use this larger channel capability where the Public Safety guys have already relocated or are beyond a 70Mi boundary, etc etc, yada yada…

So Sprint has been preparing for this day with their infrastructure being open to multiple technologies and spectrums.

Reminder of their ‘any spectrum’ infrastructure under deployment.  

 

The current use of their ESMR/SMR 800MHz spectrum is iDEN based Push to Talk PTT support. As this equipment is all beyond End of Life etc… Sprint is busy upgrading their network to accommodate the next thing.

With this approach and what they currently own, Sprint can use LTE at 800MHz or PCS frequencies in addition to WiMAX at the 2.x spectrum they share with Clear. (Some of it is jointly deployed.)

Back to the FCC, they have been shifting around use of the 800MHz in earnest since 2004 and this latest change sort of seals the deal for LTE in the band. 

FCC release here.

 

Dispatch magazine has a handy chart showing previous 800MHz allocation per initial FCC rules…

  The FCC has a handy chart showing the post July 2004 reconfiguration…

 Difference is everyone gets shuffled like public safety agencies to their own band etc…Sprint gets shuffled into the ESMR section. Note there is a little overlap here between US 800MHz and European spectrum at 791MHz-821MHz but it is a head fake. Due to DL and UL mismatches (The Euro band UL is opposite the US DL spectrum and offset only TDD would be possible so more changes to standards would be required.

 

Chart via 3g4gblogspot.com 

Ultimately a win for Sprint economically but for end users not so much, as the changes don’t go far enough to help the global LTE roaming situation. Release 10 may help with that situation a bit as operators look at using spectrum aggregation and will bump into hard choices in RF hardware for devices. This limitation will tend to encourage more cooperation globally if RF chipsets go down the path of fewer SKUs as they have been tending to do.

One other point, in reading through the changes, it looks like public safety can use the 800MHz for LTE too if they cooperate and aggregate spectrum.

 RootMetrics has been publishing network performance results. The latest one shows the discrepancies in LTE/WiMax/EVDO in the Las Vegas Market. It’s an interesting read but take this all with a large grain of salt as I have noticed that there are lots of reasons for the performance skews for ATT, MetroPCS, Sprint and VZW. Not saying their data is invalid but I do know of lots of issues behind their numbers that I’m probably not at liberty to discuss so draw your own conclusions… Full Las Vegas Report is here…

 All of their reports are here.

From the Las Vega$ report:

We’re back for more!

This report marks our second visit to the Las Vegas market, having also tested the area in November of 2011. We found some notable changes that might impact your mobile service decisions.

  • By far, the most significant change was AT&T’s LTE network upgrade and the dramatic impact it had on their data speeds: AT&T’s average download speed increased from 3.3 Mbps to 16.2 Mbps, while their average upload speed increased from 1.2 Mbps to 5.4 Mbps.
  • Though not nearly as dramatic as AT&T’s improvement, T-Mobile and Verizon each recorded faster average download speeds this visit compared to what we found in November.
  •  The speeds recorded by Cricket and Sprint showed small variation from what we found during our previous visit. MetroPCS was slower this time than what we found during our previous visit.

    Data performance

    RootScore Award winner: AT&T and Verizon

 

 

HD Voice is starting to get some attention with the recent launches by Orange and Sprint. As the hypeometer’s needle climbs, there will be a lot of attention focused in this area. I just wanted to put a few facts out there to keep it all straight. These operators have actually different technologies behind their HD Voice launches that eventually merge at VoLTE. I saw some silliness about the HD Voice launches in AnandTech and other places so let’s get started…

Technologies

First a brief history of the universe, starting with current voice technologies used with 3G networks.

Narrowband voice coding has been used in digital cellular systems since the beginning. Today’s smartphones typically employ EVRC for CDMA2000/3GPP2 based networks with a fraction of those employing the more advanced EVRC-B algorithm and AMR for UMTS/3GPP networks. EVRC and AMR are CODECs to transform voice into digitized speech using low amounts of bandwidth/throughput with a primary technique being limiting the input frequency ranges.

This chart shows the tradeoffs involved…

The measurement of voice is based on sampling a population of listeners that rate the quality of the spoken sentences after coding and decoding by an algorithm. Listeners are asked to (subjectively) rate the recordings they heard vs a reference standard. The reference standards are like (A) direct recording of voices or (B) Pulse Code Modulation (PCM) at 64Kbps known in standards as G.711. Here is an example of the rating questions:

This is an experiment to determine the perceived quality of speech over the telephone. You will be listening to a number of recorded speech samples, spoken by several different talkers, and you will be rating how good you think they sound.
Use the single headphone on the ear you normally use for the telephone. On each trial a two- sentence sample will be played. After you have listened to the sample, determine the category from the list below which best describes the overall quality of the sample. Press the numeric key on your keyboard corresponding to your rating for how good or bad that particular passage sounded.
Select the category which best describes the sample you just heard for purposes of everyday speech communication.
The OVERALL SPEECH SAMPLE was:
5 – EXCELLENT
4 – GOOD
3 - FAIR
2 – POOR
1 – BAD

EVRC compresses each 20 milliseconds of (300-3200 Hz), 16-bit sampled speech input into output frames of one of three different sizes: full rate of 171 bits (8.55 kbit/s), half rate of 80 bits (4.0 kbit/s), eighth rate of 16 bits (0.8 kbit/s). EVRC has a peak bitrate of 8.5Kbps, a minimum of 0.8Kbps and ‘conversational’ planning rate of 6Kbps. 

3GPP2 EVRC Standards:  3GPP2 C.S0014-D

The AMR (Adaptive Multi-Rate) codec encodes narrowband (200-3400 Hz) signals for each 20 milliseconds of 8000 Hz at variable bit rates ranging from 4.75 to 12.2 kbps with toll quality speech starting at 7.4 kbps. AMR has a peak bitrate of 12.2Kbps, minimum of 4.75Kbps, ‘typical’ conversational rate of 4Kbps.

3GPP AMR Standard: TS 26.071

The goal of these narrowband VOCODERs is to reduce bandwidth during a conversation while delivering acceptable call quality. You will achieve near ideal speech quality but not full lifelike sound in perfect network conditions.

If you are reading this then likely you have first hand experience with the voice coders used in 3G networks. Moving forward …

Qualcomm (the main commercial influence for EVRC) has developed a more advanced (newer) line of CODECs they call 4GV which include EVRC-B and EVRC-WB (wide band.) Alternatively, there is a small consortium of companies that drive patents for AMR including Voice Age, Nokia, Ericsson, and France Telecom, and they have evolved their narrowband AMR with AMR-WB (you guessed it, wide band.) Lastly, there is SiLK, propelled by Skype. 

 

 

 

 

EVRC-WB is based on a split band coding paradigm in which two different coding models are used for the signal by independently sampling the low frequency (LF) (0-4 KHz) and the high frequency (HF) (3.5-7 KHz) bands.

MOS: 3.24( Street Noise, 15 dB SNR  )

EVRC-WB white paper by Qualcomm      EVRC-WB test results from 3Gpp2 testing

3GPP2 EVRC-WB Standard C.S0014-D_v1.0_EVRC

AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz.

  • Configuration A (Config-WB-Code 0): 6.6, 8.85, and 12.65 kbit/s (Mandatory multi-rate configuration)
  • Configuration B (Config-WB-Code 2): 6.6, 8.85, 12.65, and 15.85 kbit/s
  • Configuration C (Config-WB-Code 4): 6.6, 8.85, 12.65, and 23.85 kbit/s
MOS: 3.14 ( Office Noise, 15 dB SNR  )
3GPP AMR-WB Standard TS 26.204
AMR-WB Whitepaper by VoiceAge

Comparison of AMR-WB and EVRC-WB…

SILK negotiates one of four modes during call setup: Narrowband (NB): 8 kHz sampling rate o Mediumband (MB): 8 or 12 kHz sampling rate. Wideband (WB): 8, 12 or 16 kHz sampling rate. Super Wideband (SWB): 8, 12, 16 or 24 kHz sampling rate. The purpose of these modes is to allow the decoder to limit the highest sampling rate used by the encoder.

MOS: 3.22 ( Office Noise, 15 dB SNR   )

Skype: Silk Data sheet and IETF Standard

Nokia paper comparing Silk and AMR-WB. (Note they are a patent holder for AMR-WB and the paper does slant that way.)

HD Voice is a broad term marketed by operators that seems to refer to the voice coding, more specifically the use of the wide band CODERs like AMR-WB and EVRC-WB. Therefore, under typical conditions, the additional bandwidth used will provide a more lifelike sound between the caller/called.

Operator Deployments

Orange in the U.K. began marketing HD Voice in September of 2010. They have a 3GPP based UMTS network thus they are using the AMR-WB vocoder. They have 7 handsets on their website as supporting the AMR-WB vocoder.

Sprint recently announced the launch of HD Voice with their launch of HTC EVO 4G LTE. Apparently they are using Transcoder Free Operation (TrFO) to support this feature. The basics of this are the 2 end points (Caller and Called) must have the EVRC-WB supported to be able to enjoy the additional sound quality. (It also means the network accepts Service Option 73 requests…)

VoLTE

3G phones have the VOCODERs built into the device and they only work with the connected 3G network infrastructure for voice calling. VoLTE uses an IP Multimedia System (IMS) architecture, that essentially is an application that runs over the LTE channel. The devices (UE) have an IMS client that uses Session Initiation Protocol (SIP) signaling to place calls. The IMS is functionally equivalent to their 3G counterparts but slightly more flexible as you can have various architectures such as distributed, localized, centralized etc… Some interesting flexibility exists in the IMS client, as it is possible for the IMS client to have variable VOCODERs and the IMS has a flexible architecture that will allow support for various VOCODERS. This probably means you can upgrade/downgrade to/from HD voice while mobile, and operators will likely support (free/incremental cost) wide band coding when on high rate connections such as WiFi, femotcells etc.. This makes life more interesting. 

On the flip side, the only official VOCODER supported with 3GPP for LTE networks right now is AMR. Some of you need to push SILK and EVRC-B into the 3GPP standards. Mobile calling could be so much more interesting than it is today.

OK, that was a huge wind up for a little paragraph. The point is HD Voice is available on a few operators over 3G today and likely available almost everywhere with VoLTE using mostly wide band VOCODERs that provide higher MOS scores but also use slightly more bandwidth than 3G voice calls. It will be interesting to see how OTT providers like Skype fit in as they can easily integrate into the IMS/3GPP/VoLTE architecture and may have more to offer in some cases.

 

 There is an interesting flow of comments coming out of the Barclays Capital High Yield Bond and Syndicated Loan Conference. Firstly there was some interesting comments by MetroPCS regarding LTE, these are from Keith Terreri VP, Finance & Treasurer, MetroPCS Wireless, Inc.

  • Firstly they have accumulated 500K subscribers so far out of between 9M-10M total subscribers. 
  • They are looking for more spectrum and are high on LTE, with over $1B allocated to spectrum allocation.
  • Metro is working with Asian suppliers to introduce ~$200 LTE/Android UEs. Remember, Metro has deployed primarily in 3GPP Band 4 (AWS) with a few markets in (PCS) Band 2. 
  • They are pretty constant in EBITDA although there’s a severe market environment that puts lots of pressure on their prepaid subscribers, and competitive pressure on they voice minutes. Thus it’s probably fair to say LTE is helping the margins. 
Joseph Eutenuer, CFO of Sprint Nextel Corporation presented their network vision. Some tidbits:
  • Steve Elfman’s group doing well getting construction permits for their 6 markets. (Means it’s verrry early in their deployment!) Sprint is deploying  LTE in 3GPP Band 25, turning off iDEN (push to talk), and consolidating site infrastructure…
  • Sprint sort of preparing for LTE iPhone. Have a similar contract with Apple to Verizon Wireless and ATT so they will be able to offer it as well.
  • They feel confident they will sell LTE iPhone even without extensive LTE coverage initially.
 
Slides regarding Sprint’s Network Vision plan…  OET and PSHSB

 Here are some thoughts about the questions I get around SVLTE.

Notice the pic and remember this day? This was Verizon and Apple answering questions about the iPhone 4. The biggest technical tidbit of the day was that the 3G iPhone 4 would not allow a simultaneous voice and data session. Of course this was dictated by the 1X CDMA network architecture, not the phone.

Here is a good graphic sort of illustrating that difference.  


Yes, The same issue exists for LTE and CDMA voice!

See, there is a confusion based matrix of items to enable the use of data during a voice call. There is some technical detail to get into to understand what the problem is.

Some of the blame goes to the phone OS, some the phone HW and some is on the network.

HSPA/WCDMA 3GPP networks like ATT and Tmobile support this feature and so the remainder is inside the mobile device. 3GPP2 based Verizon and Sprint on the other hand don’t have this capability inherently in the network. 

 

UE (Mobile Device) UI Capability/function

The device User Interface (UI) manages the integration of voice and data services for us. As you know, for example, the iPhone visually displays a dial pad for voice calls and has other apps for data like browsers, email, FaceTime/Skype etc… Not so obviously, the multitasking nature of the UI and Operating System  that supports multiple execution threads etc, facilitate and encourage data use such as it is so convenient. The interface makes it easy to switch between these tasks and actually encourage parallel data/voice simultaneous use. So Smartphone = Attention Deficit Disorder (ADD) device.

UE (Mobile Device) Hardware (HW)

Beyond the user interface, the device needs to be enabled with the capability to transmit data and voice simultaneously (or apparently so.)

Many USB based devices are data only (much like the old flip phones were primarily voice only) and only have HW to facilitate a data transmission. No voice HW present, but no need either. Result is simple and cheaper device. Smartphones sort of beg dual use, and often have HW to support data transmission and voice encoding/transmission. Now for the caveat (confusing part), of course it’s possible to have a data application for voice like Skype and that would technically eliminate the need for separate HW however the first deployments in the US are only partial data overlays over extensive voice networks, thus most devices base their connectivity on 3G voice and need to have voice compatible HW onboard for those non 4G or 3G data covered areas. Secondly, the quality of voice in voice networks is currently more assured, or higher priority than the existing non assured data services. So in the case of Skype over 4G, your voice packet gets the same priority (currently by default) as my web browsing packet. (With the PCRF this doesn’t have to be true but operators have not really unleashed this tiered type of service over LTE yet.)

So hardware wise, UEs utilize (baseband) processors capable of 3G to in addition to LTE to be capable of communicating with both networks. The first devices had 2 chipsets, 1 for 3G processing and a second for LTE processing. Only recently has there been multi generational (and multi protocol) capable chipsets that are able to process both 4G data and 3G in one chipset. 

To be clear, a device that has a single RF/baseband processing path may only be communicating on one network at a time.

Here is a typical data + voice capable device architecture showing Qualcomm components. 

So if the processing is in place, the next thing in the chain is the Radio Frequency (RF) chips. You can’t physically interface to the network without the capabilities here so it’s essential for the device to be able to interface to the voice and data spectrum bands and modulate/demodulate the signals correctly. This whole subject is so deep, more in a follow up post on this.

 Qualcomm is arguably the market leader in UE components and architecture. The pictures are the previous MSM8960 components which were 2 pieces of silicon for 3G and 4G processing and others for RF. The MSM9600 chipsets that are shipping now are essentially 1 piece of silicon for 3G and 4G processing with a second for the RF interface.

UE Network Communication Protocol

In the US, MetroPCS, Sprint, US Cellular, Verizon are networks that utilize CDMA 1X technology. 1XRTT (IS-95)/CDMA2000 or 3GPP2 based voice is a circuit switched voice protocol, with all the bells and whistles of 1.25MHz channels, RCs, Walsh codes, PNs etc… For high rate data, these networks utilize 1xEVDO (Evolution Data Only) a code and time division protocol and have slots, 1.25MHz channels, DRCs and so on. In summary, CDMA2000 uses 2 separate radio channels with 2 protocols for data and voice communications. ATT, T-Mobile and others have deployed 3GPP based WCDMA networks with 5MHz channels for voice and HSxPA with 5MHz channels for high rate data. 

Just to be doubly confusing, functions and G’s aren’t necessarily the same. There is 3G high rate data and 4G high rate data, and there is 4G voice and 3G voice. 

The communications protocols for voice on 3G on CDMA networks uses Qualcomm’s EVRC (Enhanced Variable Rate Coder) and on WCDMA networks is AMR (Adaptive Multi Rate) coding. The coding converts sound to data bits. Just to stay confusing, 4G voice, under the Voice over LTE (VoLTE) framework uses AMR also, but the rest of the voice protocol is very different than 3G. 

Data story is similar with 3G high rate data on 1X CDMA 3Gpp2 based networks is EVDO (now Rev A is most common) and on WCDMA 3GPP based networks is HSPA (now HSPA+ is becoming the most common.) For 4G we will only focus on LTE which happens to be 3GPP based.

There’s a lot of complexity in communicating the bits back and forth from the network when you compare 3G and 4G and CDMA 1xRTT with WCDMA/HSPA. Due to technical and cost constraints, most devices up to date have been either CDMA 3GPP2 capable or WCDMA 3Gpp capable. As an example, Qualcomm Gobi based devices have support for just about every situation in one component whereas Marvell only supports 3G WCDMA/HSPA and LTE.

A strong desire exists for every device to support every scenario, however the complexity and risks sort of dictated this approach of multiple networks, separate devices. See this seamless mobility chart, key point is you need both protocols, 3G and 4G for now.

 

Wireless mobile networks have had this multilayered architecture to support 3G circuit switched voice and high rate packet data at the same time for a while now. Adding in LTE is another layer of complexity that manifests itself as a battery and size constraint for today’s UE designs (more HW + more communicating layers in the devices), and in fact Steve Jobs specifically mentioned it as a barrier to LTE implementation in the iPhones.

UE Parallelism/simultaneous use

So now we are clear a device that has a single baseband processing path may only be on one network at a time. That was very long windup and I apologize. Back to the problem of the Verizon iPhone vs the ATT iPhone and voice and data simultaneously…

A mobile device that only supports a single network (voice or data) device will have to pause communicating with the data network if a voice call is to be made or received and vice-versa.  

The first generation of 3G/LTE capable devices have 2 physical components, a 3G path processor and a LTE path processor.  Qualcomm, TI, Marvell and others are beginning to ship components to enable the 2nd generation of LTE devices, those with 2 paths and shared silicon (fewer components.) The first devices are hitting the shelves. The benefits will be improvements to battery life and form factor, however neither will be as best they can be yet. Have a look at a slide from Qualcomm presentation comparing various architectures based on heat (energy waste) output. So it takes 2 radios to have a 3G and LTE flow from the device at the same time in order to support true simultaneous data and voice use.

 

 

 

 

 

 

 

 

 

 

 

The next step in device design will either be VoLTE and/or a software defined radio approach that allows more effective conservation of resources but that’s a topic for another day. Back to voice+data.

 

 

OK so the ability to make 3G voice calls and use data at the same time can be broken into smaller pieces.

  • For 3G 1X or 3GPP2 based networks like Sprint, Verizon, MetroPCS etc…, 1X (voice) + EVDO (data) is called SVDO. Some devices support this but most networks do not…As an example, the Verizon iPhone either communicates data or voice at one time.
  • For 3G WCDMA or 3GPP based networks, the voice and data bearers can be controlled from a single control point, (before HSPA it was on the same channel) therefore the voice and data can flow effectively in parallel. I won’t go deeper but this is the end effect although there are some finer points.
  • 4G LTE based networks need to have Simultaneous Voice and LTE (SVLTE) capability on both network and devices to operate in parallel.  It’s a specific function that allows better control of the voice and data over the networks. 

Today’s 3G + LTE networks carry voice over 3G networks as circuit switched voice. In a circuit switched paradigm, voice is carried in a point to point stream and requires real time connection between the two points, much like 2 tin cans with string, or a wired phone. Voice over packet, such as voice over IP networks use a connectionless paradigm, no open line is required. The world is starting to prefer it because this method also allows the use of the time in between the sound pulses to carry other data. Skype is and example of voice over packet (sound is quantized and sent over packets on the internet.) 

So the next iPhone launch with Verizon (3GPP2 based) will require specific upgraded network functionality like enhanced High Rate Packet Data (eHRPD) to be deployed as well as a multitasking OS, and multiple connectivity chipsets to enable simultaneous use whereas ATT (3GPP based) will have an easier time and only require the UE capabilities.

As of right now, the Qualcomm MSM9600 chipsets appear to support the SVLTE functionality and based on their use in The New iPad it appears Apple is headed down this path so it will be up to Verizon and others to deploy the necessary network upgrades.

Hope this helps.

Interesting slides on VoLTE….

Voice over LTE

VoLTE

VoLTE

Voice over LTE (VoLTE) is the next big thing. In fact, in 24 months, virtually all LTE enabled smart phones will support it. Curious?
Small Cells

Small Cells

Small Cells, previously known as 'femto' or 'pico' cells are possibly a savior to network operators. They offer capacity and coverage to the end user and are inexpensive for the network operator. Why aren't they everywhere?
Public Safety

Public Safety

LTE is and ideal technology for Public Safety use. See Why.